Generic Programming: what, why and how

José Pedro Magalhães

5th Dutch Haskell Users’ Group meeting
11/09/2009
What kind of generic?

In many languages, the function below is generic:

\[
\text{length} :: [a] \rightarrow \text{Int} \\
\text{length} [] = 0 \\
\text{length} (_ : t) = 1 + \text{length} t
\]

In Haskell, however, we call \textit{length} a \textbf{polymorphic} function, and reserve the term \textit{generic} for something else...
Imagine you are writing software for helping students turn logic expressions into disjunctive normal form.
Imagine you are writing software for helping students turn logic expressions into disjunctive normal form.

You need:

- A description of the logic domain
Imagine you are writing software for helping students turn logic expressions into disjunctive normal form.

You need:

- A description of the logic domain
- Functionality on that domain:
 - Parsing and pretty-printing
 - Equality and top-level equality
 - Folding
 - Exercise generation
 - ...
Let’s get started, then:

```
data Logic = Logic → Logic  -- implication
    | Logic ↔ Logic  -- equivalence
    | Logic ∧ Logic  -- conjunction (and)
    | Logic ∨ Logic  -- disjunction (or)
    | Not Logic      -- negation (not)
    | Var String     -- variables
    | T              -- true
    | F              -- false
```
Exercise assistants: Logic III

\[\text{showLogic} :: \text{Logic} \rightarrow \text{String}\]
\[\text{showLogic} = \ldots\]
Exercise assistants: Logic III

\[
\text{showLogic} :: \text{Logic} \rightarrow \text{String} \\
\text{showLogic} = \ldots
\]

\[
\text{parseLogic} :: \text{String} \rightarrow \text{Logic} \\
\text{parseLogic} = \ldots
\]
Exercise assistants: Logic III

\[
\text{showLogic} :: \text{Logic} \rightarrow \text{String} \\
\text{showLogic} = \ldots \\
\text{parseLogic} :: \text{String} \rightarrow \text{Logic} \\
\text{parseLogic} = \ldots \\
\text{type LogicAlgebra} a = \ldots \\
\text{foldLogic} :: \text{LogicAlgebra} a \rightarrow \text{Logic} \rightarrow a \\
\text{foldLogic} = \ldots \\
\text{evalLogic} :: (\text{String} \rightarrow \text{Bool}) \rightarrow \text{Logic} \rightarrow \text{Bool} \\
\text{evalLogic env l} = \text{foldLogic} \ldots l
\]
Exercise assistants: Logic III

\[\text{showLogic :: Logic} \rightarrow \text{String} \]
\[\text{showLogic} = \ldots \]

\[\text{parseLogic :: String} \rightarrow \text{Logic} \]
\[\text{parseLogic} = \ldots \]

\[\textbf{type} \text{ LogicAlgebra} a = \ldots \]

\[\text{foldLogic :: LogicAlgebra} a \rightarrow \text{Logic} \rightarrow a \]
\[\text{foldLogic} = \ldots \]

\[\text{evalLogic :: (String} \rightarrow \text{Bool)} \rightarrow \text{Logic} \rightarrow \text{Bool} \]
\[\text{evalLogic env l} = \text{foldLogic} \ldots l \]

\[\textbf{instance} \text{ Arbitrary Logic where} \]
\[\text{arbitrary} = \ldots \]

\[\ldots \]
Exercise assistants: Linear expressions I

Great! Your exercise assistant was a success and now you are asked to develop a tool to help students solving linear equations.

You need:

▶ A description of the linear expressions domain
Exercise assistants: Linear expressions I

Great! Your exercise assistant was a success and now you are asked to develop a tool to help students solving linear equations.

You need:

- A description of the linear expressions domain
- Functionality on that domain:
 - Parsing and pretty-printing
 - Equality and top-level equality
 - Folding
 - Exercise generation
 - …
Let’s get started, then:

```haskell
data Expr = Con Rational    -- Constants
          | EVar String     -- Variables
          | Expr :+: Expr   -- Addition
          | Expr :-: Expr   -- Subtraction
          | Expr :*: Expr   -- Multiplication
          | Expr :/: Expr   -- Division
```
Exercise assistants: Linear expressions III

\[\text{showExpr} :: \text{Expr} \rightarrow \text{String} \]
\[\text{showExpr} = \ldots \]
Exercise assistants: Linear expressions III

\[\text{showExpr} :: \text{Expr} \to \text{String} \]
\[\text{showExpr} = \ldots\]

\[\text{parseExpr} :: \text{String} \to \text{Expr} \]
\[\text{parseExpr} = \ldots\]
Exercise assistants: Linear expressions III

\begin{align*}
 & \text{showExpr :: Expr } \to \text{ String} \\
 & \text{showExpr} = \ldots \\
 & \text{parseExpr :: String } \to \text{ Expr} \\
 & \text{parseExpr} = \ldots \\
 & \text{type ExprAlgebra a} = \ldots \\
 & \text{foldExpr :: ExprAlgebra a } \to \text{ Expr } \to \text{ a} \\
 & \text{foldExpr} = \ldots \\
 & \text{evalExpr :: (String } \to \text{ Rational) } \to \text{ Expr } \to \text{ Rational} \\
 & \text{evalExpr env e} = \text{foldExpr } \ldots \ e
\end{align*}
Exercise assistants: Linear expressions III

\[\text{showExpr} :: \text{Expr} \to \text{String}\]
\[\text{showExpr} = \ldots\]

\[\text{parseExpr} :: \text{String} \to \text{Expr}\]
\[\text{parseExpr} = \ldots\]

\textbf{type} \ \textit{ExprAlgebra} \ a = \ldots

\[\text{foldExpr} :: \text{ExprAlgebra} \ a \to \text{Expr} \to a\]
\[\text{foldExpr} = \ldots\]

\[\text{evalExpr} :: (\text{String} \to \text{Rational}) \to \text{Expr} \to \text{Rational}\]
\[\text{evalExpr \ env \ e} = \text{foldExpr \ \ldots \ e}\]

\textbf{instance} \ \textit{Arbitrary} \ \textit{Expr} \ \textbf{where}\]
\[\text{arbitrary} = \ldots\]

\ldots
Oops. After all your tool should deal with polynomials too. You need to add exponentiation to your datatype:

```
data Expr = Con Rational |
            EVar String |
            Expr :+: Expr |
            Expr :-: Expr |
            Expr :*: Expr |
            Expr :/: Expr |
            Expr :^: Expr -- Exponentiation
```
Exercise assistants: Polynomials...

Oops. After all your tool should deal with polynomials too. You need to add exponentiation to your datatype:

```
data Expr = Con Rational  
  | EVar String  
  | Expr :+: Expr  
  | Expr :->: Expr  
  | Expr :*: Expr  
  | Expr :/: Expr  
  | Expr :^: Expr   -- Exponentiation
```
Oops. After all your tool should deal with polynomials too. You need to add exponentiation to your datatype:

```haskell
data Expr = Con Rational
           | EVar String
           | Expr :+: Expr
           | Expr :敢: Expr
           | Expr :*: Expr
           | Expr :/: Expr
           | Expr :^: Expr -- Exponentiation
```

Of course, now you also need to change all your functions...
Going generic

... is there no easier way to do this? ...
Going generic

...is there no easier way to do this?...

Yes! The answer is **Generic Programming**. With it you can:

- Write functions that work on any datatype
- Write common functionality once and for all
- Change your datatypes without changing your functions
- Avoid errors from code duplication
- ...
What is necessary for generic programming?

The essential ingredient is a reflection mechanism. We have to be able to inspect values and their types at runtime. Additionally, we have to be able to represent many different values in a uniform way. If we can map all values into a small set of datatypes, we can then define functions on this small set and they will work for every datatype.
Ingredients for Generic Programming I

What is necessary for generic programming?

The essential ingredient is a reflection mechanism. We have to be able to inspect values and their types at runtime.
Ingredients for Generic Programming I

What is necessary for generic programming?

The essential ingredient is a reflection mechanism. We have to be able to inspect values and their types at runtime.

Additionally, we have to be able to represent many different values in a uniform way. If we can map all values into a small set of a datatypes, we can then define functions on this small set and they will work for every datatype.
Haskell’s **data** construct combines several features: type abstraction, type recursion, (labeled) sums, and (possibly labeled) products, but they are essentially **sums of products**.
Haskell’s **data** construct combines several features: type abstraction, type recursion, (labeled) sums, and (possibly labeled) products, but they are essentially **sums of products**.

We can represent them using the following data types:

```
data a :+: b = L a | R b
data a :*: b = a :*: b
data Unit = Unit
infixr 5 :+: 
infixr 6 :*: 
```
Structure Types

We can use these structure types to encode Haskell data types:

```haskell
data Tree = Leaf | Node Tree Int Tree

type RTree = Unit :+: Tree :*: Int :*: Tree

data List a = Nil | Cons a (List a)

type RList a = Unit :+: a :*: List a
```
Generic values

We encode the values in the same way:

\[
\begin{align*}
\text{tree} &:: \text{Tree} \\
\text{tree} &= \text{Leaf} \\
\text{rtree} &:: \text{RTree} \\
\text{rtree} &= \text{L Unit} \\
\text{list} &:: \text{List Int} \\
\text{list} &= \text{Cons 2 Nil} \\
\text{rlist} &:: \text{RList Int} \\
\text{rlist} &= \text{R (2 :×: Nil)}
\end{align*}
\]
Types and structure types are isomorphic

A type is isomorphic to its structural representation type. For example, for the list data type we have:

\[
\begin{align*}
\text{from}_{\text{List}} & :: \text{List} \ a \rightarrow \text{RList} \ a \\
\text{from}_{\text{List}} (\text{Nil}) & = \text{L Unit} \\
\text{from}_{\text{List}} (\text{Cons} \ a \ as) & = \text{R} \ (a : \times : as) \\
\text{to}_{\text{List}} & :: \text{RList} \ a \rightarrow \text{List} \ a \\
\text{to}_{\text{List}} (\text{L Unit}) & = \text{Nil} \\
\text{to}_{\text{List}} (\text{R} \ (a : \times : as)) & = \text{Cons} \ a \ as
\end{align*}
\]

All the necessary infrastructure (RList, from\text{List} and to\text{List}) can be generated automatically.
Generic functions

A generic function can now be defined by induction on the structure of types, by writing cases for binary sums, binary products, nullary products, and primitives.

We use a GADT to unify the representation types into a single Rep:

```haskell
data Rep t where
  RSum :: Rep a → Rep b → Rep (a :+: b)
  RProd :: Rep a → Rep b → Rep (a :×: b)
  RUnit :: Rep Unit
  RInt   :: Rep Int
  RChar  :: Rep Char
```
Now we can define, say, generic equality:

\[eq :: \text{Rep} \ a \rightarrow a \rightarrow a \rightarrow \text{Bool} \]

\[eq \ (\text{RInt} \ i \ j) = eq_{\text{Int} \ i \ j} \]
\[eq \ (\text{RChar} \ c \ d) = eq_{\text{Char} \ c \ d} \]
\[eq \ (\text{RUnit} \ \text{Unit} \ \text{Unit}) = \text{True} \]
\[eq \ (\text{RSum} \ r_a \ r_b) \ (\text{L} \ a_1) \ (\text{L} \ a_2) = eq \ r_a \ a_1 \ a_2 \]
\[eq \ (\text{RSum} \ r_a \ r_b) \ (\text{R} \ b_1) \ (\text{R} \ b_2) = eq \ r_b \ b_1 \ b_2 \]
\[eq \ (\text{RSum} \ r_a \ r_b) _ _ = \text{False} \]
\[eq \ (\text{RProd} \ r_a \ r_b) \ (a_1 :\times: b_1) \ (a_2 :\times: b_2) = \text{eq} \ r_a \ a_1 \ a_2 \]
\[\land \eq \ r_b \ b_1 \ b_2 \]
Generic equality II

But we are still lacking a case for arbitrary datatypes. When two types are isomorphic, the corresponding isomorphisms can be stored as a pair of functions converting back and forth—an embedding-projection pair:

\[
\text{data } \text{EP } d \ r = \text{EP} \ \{\text{from } :: (d \rightarrow r), \text{to } :: (r \rightarrow d)\}\]

But we are still lacking a case for arbitrary datatypes. When two types are isomorphic, the corresponding isomorphisms can be stored as a pair of functions converting back and forth—an embedding-projection pair:

\[
\textbf{data } EP \; d \; r = EP \{ from :: (d \rightarrow r), to :: (r \rightarrow d) \}
\]

We extend our representation type with a case for arbitrary types:

\[
\textbf{data } Rep \; t \; \textbf{ where } \\
\text{ ... } \\
RType :: EP \; d \; r \rightarrow Rep \; r \rightarrow Rep \; d
\]
Generic equality III

And add this case to the generic equality function:

\[eq :: \text{Rep} \ a \to \text{a} \to \text{a} \to \text{Bool} \]
\[
\ldots
\]
\[
eq (\text{RType} \, \text{ep} \, r_a)\ t1\ t2 = \text{eq} \, r_a \, (\text{from ep} \, t1) \, (\text{from ep} \, t2)
\]
Generic equality III

And add this case to the generic equality function:

\[
\text{eq} :: \text{Rep } a \to a \to a \to \text{Bool}
\]

\[
\cdots
\]

\[
\text{eq } (\text{RType } ep \; r_a) \; t1 \; t2 = \text{eq } r_a \; (\text{from } ep \; t1) \; (\text{from } ep \; t2)
\]

As an example, for lists we have:

\[
\text{rList} :: \text{Rep } a \to \text{Rep } (\text{List } a)
\]

\[
\text{rList } r_a = \text{RType } (\text{EP from}_{\text{List}} \; \text{to}_{\text{List}})
\]

\[
(\text{RSum } \text{RUnit } (\text{RProd } r_a \; (\text{rList } r_a)))
\]
The basic principle here described can be explored in several different ways. We have seen a variant of Lightweight Implementation of Generics and Dynamics (LIGD). There are several other libraries for generic programming:

- Scrap Your Boilerplate (SYB)
- Uniplate
- Generics for the Masses (EMGM)
- Regular
- MultiRec
- ... and at least 7 others

These libraries vary in expressiveness, ease of use and understanding, and underlying mechanisms used.
Conclusions I

- Generic programming provides a way of reducing “boilerplate” code
- Functions are defined on the structure of datatypes and therefore work for every datatype
- If a datatype changes, the generic functions do not need to be adapted

A lot of work has been done in generic programming, and many functions are already available “for free”, such as generation of test data, (basic) parsing and pretty-printing, rewriting, etc.
Conclusions II

Current work at Utrecht University focuses on:

▶ Development of a powerful, easy to use and expressive generic programming library
▶ Applying generic programming to a large, showcase application
▶ Comparing performance of different approaches and investigating techniques for optimization of generic programs